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ABSTRACT

A novel energy relation in eigen modes of transmission line is herein proposed and the variational express-
ions for propagation constant of various transmission lines, which have never been treated in variational form,

can be systematically derived through this relation.

Introduction

Propagation constants of eigen modes traveling
along a uniform transmission line are important para-
meters in analyzing the characteristics of transmission
line. The precise explicit expression for propagation
constant, however, cannot be obtained, except for very
simple structure. Therefore, the variational expre-
ssion for propagation constant is very useful when the
structure of transmission line is complex.

Although some variational expressions have

already been obtainedl—s, we will provide, here, a new
derivation of the variational expression for propaga-
tion constant from a new energy relation in eigen modes
of transmission line.

A Novel Energy Relation

It is known 4 that the time-average electric
enerzy is equal to the time-average magnetic energy
for the eigen mode propagating along the loss—free
transmission line, and the variational expression for

propagation constant can be derived from this principle.

The same conclusion has been obtained for the loss-free

cavity resonator and its resonance frequencies

The above conclusion, however, is not wvalid for
the evanescent eigen modes of loss-free transmission
line. The magnetic energy is greater than the electric
energy for the evanescent TE modes in the homogeneous
Waveguide, whereas the electric energy is greater than
the magnetic energy for the evanescent TM modes.

It should be noted, however, that while the
energy in the above discussion is regarded either as
the electric energy or the magnetic energy, the axial
field components energy can be proved ( See Appendix-1)
to be equal to the transverse field components energy
for the evanescent eigen modes of loss—free trans-
mission line. That is,

SSHzBz*ds =//HtBt*ds + SS/EtDt*ds (TE modes) (1)

S/EzDz*ds =//HtBt*ds + [/EtDt*ds (TM modes) (2)
in which the astersks stand for the complex conjugate,
z-axis for the axis of transmission line, and the
subscript t for the transverse components. The sur-
face integral is performed over the cross sectional
area of transmission line.

Furthermore, the following integral may be
expected to vanish for any eigen mode:

I=//[HtBt-1zBz]ds ~ [S[EtDt-EzDz]ds = 0 3)

Actually, the integral I can be proved to become zero
by the application of Maxwell's equations. (See
Appendix-2) Eaquation (3) demonstrates the new energy

relation in eigen modes of transmission line. The
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complex conjugate sign is dropped in Eq.(3), because
no useful formula containing it can exist for the
lossy transmission line. Furthermore it is assumed
in the above discussion that the perfect electric or
magnetic wall encloses the transmission line. This
means that the power-flow toward the transverse
direction vanishes along the boundary C enclosing the
transmission line. If the transverse power~flow
through C occurs, Eq.(3) can be modified as follows:

I=//[HtBt-HzBz-EtDt+EzDz]ds + %fn'[EtXHz—EzXHt]dl
=0 4)

where the line integral in Eq.(4) corresponds to the
power—-flow through the boundary C and n is the outward
normal unit vector.

Even when the materials composing the guide are
dissipative, inhomogeneous, anisotropic and non-
reciprocal, the integral I given by Eq.(4) always
vanishes for any modes. Moreover, the equation also
allows for the discontinuous change of materials in
the transverse plane as well as for the imperfect
boundary wall. (See Appendix-2)

The Variational Expressions
for Propagation Constant

We shall show that the variational expressions
for propagation constant can be systematically derived
from Eq.(3) or Eq.(4).

Ferrite-filled Waveguidel

We will investigate the waveguide involving
ferrite materials magnetized perpendicularly to the
broad side plane, as the first example. For simplicity
we will study only the modes of which single electric
field component is Ey.

Let Ey be of the form:

Ey=f (x)exp(-vz) (5)

The other field components are written in terms of f(x)
by the use of Maxwell's equations.

Bx=—j£—f(x)exp(—yz) (6)
Bz=—~§£§lexp(—yz) (7)
i LGOI o5 ) (8
Hp= T L) oy () )

where p and k mean the diagonal and off-diagonal

L 4
"Collin has been treated this problem in a similar
way but his treatment of evanescent modes is not clear.
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elements of ferrite tensor permeability, respectively
and ue = (u?2-k?)/u and v is the operating angular
frequency and f(x) is the first derivative of f(x).
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Fig.l Ferrite-filled Waveguide.

Therefore, the integral I given by Eq.(3) can be
written in terms of f(x) as follows:

(10)
I=bfg(w2ue)1{-(w2uea+Y2)f(x)-zjyif(x)fxx)+f(xfﬁdx

The function f(x) making I stationary, must satisfy the
following differential equation:

SESD S B 0 920 )

Eq.(l1) is also directly deduced from Maxwell's
equations. Futhermore, the correct function f(x)
satisfying Eq.(1l), makes the integral I vanish.

Inversely, the variational expression for propa-
gation constant Y can be obtained, imposing the
restriction that Eq.(10)=0.

. .akff ax ff afZ-pZuecf?
st e - it oSk
= 12)

fg(wzuefjfzdx

Waveguide with Wall Impedance

The next example is the waveguide with wall

imMpédarice, initially investigated by Kurokawas. For
this problem, Eq.(4) must be employed in deriving the
variational expression, because the transverse power-—
flow occurs at the boundary of the waveguide.

We will seek, herein, the functional of which
trial function is the transverse electric field Et(x,y).
For this reason, the other field components must be
written in terms of Et(x,y) by the application of
Maxwell's equations.

Hz= EE (13)
Jun

o= L (14)
e 4 ,

He EX(vanXEt—w cEt) (15)
Jwy

For brevity, the materials involved in the waveguide
are assumed to be isotropic. The wall impedance Z; and
Z, are defined as follows:
(onC)

Z Ht=nxEz (16)
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Fig.2 Waveguide with wall impedance.
Z1Hz=nxEt (oncC) 17
Substituting Eqs.(13)-(17) into Eq.(4), we have
u 1, 2 2 1 2
1= - VX—VXEt~- Et)< + VXEt
I QZEZ( . w?eEt) 7353( )
"8Et2+ —Y]Z-;(V' ceEt) 2]dS
—f[%%g{%VXEt)2—%%%2(VX%VXEt—w2€Et)Z]dl (18)

Upon imposing I=0, the propagation constant Yy can be
solved from Eq.(18).

2
Y2={ff[u(VX%VXEt-wZEEt)z— g—(v-eEt)Z]ds

+f§i(vX%VXEt—w2€Et)Zdl}/{ff[%{VxEt)z_wngtZ]ds

+r22.doxgry2a1) (19)
Jw

Eq.(19) is equal to the variational expression

e : 5
initially given by Kurokawa. However, he gave no way
how to derive this variational expression.

Conclusion

The novel energy and power-flow relation in eigen
modes of uniferm transmission line proposed here, has a
wide applicability. The variational expression for
propagation constant can be systematically derived from
this relation. Futher application is now being done.
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Appendix
1. Proof of Egs.(l) and (2).

For TE modes, the single axial field component
is Hz, and the other field components are written in
terms of Hz, by the application of Maxwell's equations.

Ee=1d 1ocvns (a1)
Ht=-F VHz (A2)
where
k2=Y2+w2ue (A3)
Hence, we have
Wet=/fe|Et|2
=u%?ff(VHZ)2ds (a4)
Wmt=ffu!Hz|2ds
=uli£§ff(VHz)2ds (45)
Wmz=/fu|Hz|2ds (A6)
Furthermore, Hz must obey the Helmholtz equation:
V2Hz + kZHz=0 (A7)
and satisfy the boundary condition:
Mz _ g (48)
an
Subsiituting Egs. (A7) and (A8) into Eq.(A6), the
following equation can be obtained.
Wmz= - %gfszVszds
= - Briredtan - 17 (viz)2as]
=k%f1vuz)2ds (A9)
Therefore, when k2 - w2ue<0,
Wmz + Wmt = Wet (A10)
while k% - w2ue>0,
Wmz = Wmt + Wet (A11)

On the other hand, Ez is regarded as a generating
function for TM modes, and the same conclusion can be
easily deduced.

2. Proof of Egs.(3) and (4).
Maxwell's equations are resolved into two

components, the transverse component and longitudinal
component.

VtxEz - v kxEt = -jwBt (A12)
VtxEt= -jwBz (A13)
VtxHz - y kxHt = jwDt (Al4)
VtxHt=jwDz (A15)

where, k is a unit vector in the longitudinal direction.
From Egs.(Al12)-(Al5), we have
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HtBt-EtDt= g—[Hz-VCXEz + Et.VtxHz] (Al6)
HzBz~EzDz= %{Hz-VtXEt + Ez-VtxHt] (A17)
Using the vector identity:
/ne«(AxB)d1l=//B-VxAds-/fA+VxBds (A18),
we have also the following equations:
Sne(HtxEz)dl=/ EzVxHtds~/ Ht +VxEzds
=[[Ez+VtxHtds~//Ht -VtxEzds (A19)
Sne(EtxHz)dl=/ HzVxEtds~/fEt+VxHzds
=//HzVtxEtds-SfEt+VtxHzds (A20)
Hence, we have Eq.(4). That is,
SS[HtBt-HzBz]ds-//[EtDt-EzDz]ds
+L 0+ (Bexliz-Ezxiit) d1=0 (a21)

Especially, if the perfect electric or magnetic wall
exist at the boundary of transmission line, the line-~
integral in Eq.(A21) will vanish.



