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ABSTPACT

in eigen modes of transmission line is herein proposed and the variational expresa-
of various transmission lines. which have never been treated in variational form.
through this relation.

Introduction

Propagation conatanta of eigen modes traveling

along a uniform transmission line are important para-
meter in analyzing the characteristics of transmission
line. The precise explicit expression for propagation

constant, however, cannot be obtained, except for very

simple structure. Therefore, the variational expre-

ssion for propagation constant is very useful when the
structure of transmission line is complex.

Although some variational expressions have
1-5

already been obtained , we will provide, here, a new

derivation of the variational expression for propaga-

tion constant from a new energy relation in eigen modes
of transmission line.

A Novel Energy Relation

It is known
4

that the time-average electric

ener~y is equal to the time–average magnetic energy

for the eigen mode propagating along the loss-free
transmission line, and the variational expression for
propagation constant can be derived from this principle.
The same conclusion has been obtained for the loss–free

3
cavity resonator and its resonance frequencies .

The above conclusion, however, is not valid for
the evanescent eigen modes of leas-free transmission

line. The magnetic energy is greater than the electric

energy for the evanescent TE modes in the homogeneous
waVeguide, Whereas the electric energy is greater than

the magnetic energy for the evanescent TM modes.
It should be noted, however, that while the

energy in the above discussion ia regarded either as
the electric energy or the magnetic energy, the axial
field components energy can be proved ( See Appendix–1)

to be equal to the transverse field components energy
for the evanescent eigen modes of loss-free trans-
mission line. That is,

ffHzBz~<ds =fJHtBt*ds + JfEtDt*ds (TE modes) (1)

JfEzDz*ds =ffHtBt*ds + ffEtDt~~ds (TM modes) (2)

in which the astersks stand for the complex conjugate,

z-axis for the axis of transmission line, and the
subscript t for the transverse components. The sur-
face integral ia performed over the cross sectional

area of transmiaaion line.
Furthermore, the following integral may be

expected to vanish for any eigen mode:

I=JJIHtBt-lIzBz]ds - ff[EtDt-Ez3z]ds = O (3)

Actually, the integral I can be proved to become zero

by the application of Maxwell’s equations. (See

Appendix-2) Equation (3) demonstrates the new energy

relation in eigen modes of transmission line. The

complex conjugate sign is dropped in Eq.(3) , because

no useful formula containing it can exist for the

10SSY transmission line. Furthermore it is asaumed

in the above discussion that the perfect electric or
magnetic wall encloses the transmission line. This
meana that the power-flow toward the transverse

direction vanishes along the boundary C enclosing the
transmission line. If the transverse power-flow

through C occurs, Eq.(3) can be modified as follows:

I=,ff[HtBt-HzBz-EtDt+EzDz]ds +~fn-[EtxHz-Ez.Ht]dl

=0 (4)

where the line integral in Eq.(4) corresponds to the

power–flow through the boundary C and n is the outward

normal unit vector.

Even when the materials composing the guide are
dissipative, inhomogeneous, anisotropic and non-
reciprocal, the integral I given by Eq.(4) always

vanishes for any modes. Moreover, the equation also

allows for the discontinuous change of materials in
the transverse plane as well as for the imperfect
boundary wall. (See Appendix-2)

The Variational Expressions

for Propagation Constant

We shall show that the variational expressions

for propagation constant can be systematically derived

from Eq. (3) or Eq. (4).

Ferrite-filled Waveguidet

We will investigate the waveguide involving
ferrite materials magnetized perpendicularly to the

broad side plane, as the first example. For simplicity
we will study only the modes of which single electric
field component is Ey.

Let Ey be of the form:

Ey=f (x)exp (-yz) (5)

The other field components are written in terms of f(x)
by the use of Maxwell’s equations.

Bx=-l&f(x)exp(-yz) (6)

“f-
Bz=- j:x)LXp(-yZ)

Hx_j Yllf (x)-Kf’(x)
QXP(-YZ)u~e

~z=y Kf(X) +juf(x) xp(_yz)
uue

where u and K mean the diagonal and off–diagonal

(7)

(8)

(9)

.~
Collin4 has been treated this problem in a similar
way but his treatment of evanescent modes is not clear.
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elements of ferrite tensor permeability, respectively

and De = (U2-K2)/P and u is the oPerating angular
frequency and f(x) is the first derivative of f (x) .
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Fig.1 Ferrite-filled Wavegulde.

Therefore, the integral I given by Eq.(3) can be

written in terms of f(x) as follows:
(lo)

I=bf~(u2ue) 7[–(w2pec+y2) f (x)-2 jy~(x)f(x)+f(x?]dx

The function f(x) making I stationary, must satisfy the

following differential equation:

‘[m -jdx pe
~] +jy~@(x)+y2~2f(x)=0 (11)

Eq. (11) is also directly deduced from Maxwell’s
equations. Furthermore, the correct function f (x)

satisfying Eq. (11), makes the integral I vanish.
Inversely, the variational expression for propa-

gation constant y can be obtained, imposing the

restriction that Eq. (10)=0.

I&aveguide with Wall Impedance

The next example is the waveguide with wall

:. 5
~mpedarice, initially investigated by Kurokawa . For

this problem, Eq.(4) must be employed in deriving the

variational expression, because the transverse power-

flow occurs at the boundary of the waveguide.
We will seek, herein, the functional of which

trial function is the transverse electric field Et (x, y) .
For this reason, the other field components must be

written in terms of Et(x,y) by the application of
Maxwell’s equations.

,z=_:Y#

V.&EtEz= —
YE ~

Ht-
kX(VX@xEt-u2cEt)
juy

For brevity, the materials involved in

are assumed to be isotropic. The wall

Z2 are defined as follows:

ZIHt=nXEz (on C)

(13)

(14)

(15)

the waveguide
impedance Z ~ and

(16)

/ n

Hii
/

n

% ~t=z2H~
n

Fig. 2 Waveguide with wall impedance,,

ZIHz=nXEt (OnC) (17)

Substituting Eqs. (13)-(17) into Eq.(4), we have

I= Jf[-y#@VXEt-02cEt)2 +~(VXEt)2

-eEt2+~(V.cEt)2]ds

-f[#%+-VxEt)2~(’vx#xEt-~2EEt) ‘Idl (18)

Upon imposing 1=0, the propagation constant y can be
solved from Eq. (18).

y2={jf[@f XEt-u2sEt)2- $VwEt)2]ds

+##Vx>xEt-u2sEt)2dl}/{f@’xEt)2-u2&Eti\]ds

+f~(~~Et)*dl} (19)

Eq.(19) is equal to the variational expression

5
initially given by Kurokawa . However, he gave no way
how to derive this variational expression.

Conclusion

The novel energy and power-flow relation in eigen
modes of uniform transmission line proposed here, has a

wide applicability. The variational expression for
propagation constant can be systematically derived from
this relation. Futher application is now being done.
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Appendix

1. Proof of Eqs. (1) and (2) .

For TE modes, the single axial field component

is Hz, and the other field components are written in

terms of Hz, by the application of Maxwell’s equations.

Et=% kx7Hz (Al)

Ht.-k+ VHZ (AZ)

where

k2=y2~2Uc (A3)

Hence, we have

Wet=ffclEt12

=~~ff(VHz)2ds (A4)

Wmt=ff~lHz12ds

w‘v k fJ(VHz)2ds (A5)

Wmz=ffVlHz12ds (A6)

Furthermore, Hz must obey the Helmholtz equation:

V2HZ + k2Hz=0 (A7)

and satisfy the boundary condition:

aHz

an
—=0

Substituting Eqs. (A7) and
following equation can be

Wmz= - &.ffHzV2Hzds

= - &fHz&dl -

‘k&<VHz)2ds

(A8)

(A8) into Eq. (A6), the
obtained.

ff(VHz)2ds]

(A9)

Therefore, when k2 – U2UC<0,

Wmz + Wmt = Wet

while k2 - LIAJE>O,

Wmz = Wmt + Wet

(A1O)

(All)

On the other hand, Ez is regarded as a generating
function for TM modes, and the same conclusion can be

easily deduced.

2. Proof of Eqs.(3) and (4).

Maxwell’s equations are resolved into two
components, the transverse component and longitudinal

component.

VtxEz - y kxEt = -juBt (A12)

VtxEt= -jwBz (A13)

VtxHz – y kxHt = juDt (A14)

VtXHt=jwDz (A15)

Using

HtBt-EtDt= +[Hz. VtxEz + Et. VtxHz]

HzBz-EzDz= ;[Hz.VtxEt + Ez.VtxHt]

the vector identity:

(A16)

(A17)

(A18) ,fn. (AxB)dl=JfB.VxAds-fJA.VxBds

we have also the following equations:

fn.(HtxEz)dl=ffEz .VxHtds-ffHt.VxEzds

=JfEz.VtxHtds-ffHt .VtxEzds

fn.(EtxHz)dl=ffHz .VxEtds-ffEt.VxHzds

‘ffHz.VtXEtds–JfEt.VtxHzds

Hence, we have Eq.(4). That is,

.ff[HtBt-HzBz]ds-ff[EtDt-EzDz]ds

(A21)
Qfn. (EtXHz-EzxHt)dl=O

u

Especially, if the perfect electric or magnetic wall

exist at the boundary of transmission line, the line-

integral in Eq.(A21) will vanish.

(A19)

(A20)

where, k is a unit vector in the longitudinal direction.
From Eqs. (A12)-(A15), we have
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